Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1234949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588972

RESUMO

Sodium dichloroisocyanurate (NaDCC) is commonly used for treating drinking water, industrial water, and wastewater. This study aimed to investigate the potential effects of NaDCC-treated waterline drinking water on the growth of AA+ broilers by reducing microbial levels in the waterline. A total of 480 healthy 1-day-old AA+ broilers (46.77 ± 0.50 g) were selected for the experiment and randomly divided into four groups with six replicates of 20 birds each. The control group received regular drinking water, while the test groups received drinking water with NaDCC concentrations of 10, 30, and 50 mg/L. The test groups consumed the treated water on specific days throughout the 42-day experimental period. Results showed that NaDCC treatment significantly reduced the levels of E. coli, Salmonella, S. aureus and Moulds in the drinking water at the waterline (p < 0.05). Drinking water with NaDCC also led to reduced broiler fecal emissions of NH3 and H2S, as well as reduced counts of E. coli, Salmonella, S. aureus and Moulds (p < 0.05), particularly at 30 mg/L and 50 mg/L concentrations. Broilers consuming NaDCC at 50 mg/L exhibited a significant increase in ADG from days 1-42 (p < 0.05). The levels of E. coli, Salmonella, S. aureus and Moulds in the drinking water at the waterline were significantly and positively correlated with the bacterial count in the feces (p < 0.05, R > 0.6). Additionally, bacterial levels in drinking water and broiler feces were negatively correlated with broiler production performance indicators, including ADG, ADFI, F/G and AWC. In conclusion, NaDCC can indirectly enhance broiler performance by reducing the levels of harmful bacteria in the waterline without affecting normal drinking water. The addition of 30 mg/L or 50 mg/L of NaDCC to the waterline in poultry production can effectively control harmful microorganisms and improve poultry health. Based on the experiment's results, it is recommended to preferentially use 30 mg/L NaDCC in the waterline to reduce farming costs.

2.
Front Physiol ; 14: 1144997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37057186

RESUMO

In the study, Wheat germ, Hops and Grape seed extracts were made into a mixture (BX). The BX was supplemented in AA + broilers diets to investigate the effects of BX on broiler growth performance, blood indicators, microbiota, and noxious gas emissions in faeces. Four hundred and eighty 1-day-old AA + male broilers with an average initial body weight (44.82 ± 0.26) were randomly divided into four dietary treatments of six replicates each, with 20 birds per replicate. The experimental groups consisted of a group fed a basal diet and groups fed basal diet supplemented with 0.05%, 0.1%, and 0.2% BX. The trail was 42 days. The results showed that supplementing the dietary with graded levels of BX linearly increased ADG and ADFI from days 22-42 and 1-42. When dietarys supplemented with 0.2% BX significantly increased ADG and ADFI on days 22-42 and 1-42 (p < 0.05). The addition of BX reduced H2S and NH3 emissions in the faeces; the levels of E. coli and Salmonella in the faeces were significantly reduced and the levels of Lactobacillus were increased (p < 0.05). In this trial, when the diet was supplemented with 0.2% BX, faecal levels of E. coli and Salmonella were consistently at their lowest levels and Lactobacillus were at their highest. At the same time, NH3 and H2S emissions from broiler faecal also had been at their lowest levels. Conclusion: Dietary supplementation with a 0.2% BX could improve the growth performance of broilers and also reduced faecal H2S and NH3 emissions, as well as faecal levels of E. coli and Salmonella, and increased levels of Lactobacillus. Thus, BX made by Wheat germ, Hops and Grape seed extract is expected to be an alternative to antibiotics. And based on the results of this trial, the recommended dose for use in on-farm production was 0.2%.

3.
Front Vet Sci ; 9: 1098807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590807

RESUMO

The aim of the experiment was to investigate the effects of a probiotic complex (PC) consisting of Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis on productive performance, carcass traits, immune organ indices, fecal microbiota counts and noxious gas emissions in AA+ male broilers. Three hundred and sixty 1-day-old AA+ male broilers with similar body weight (44.77 ± 0.25) were randomly divided into 3 treatment groups of 6 replicates each, with 20 broilers in each replicate. The experimental groups consisted of a group fed a basal diet and groups fed basal diet supplemented with 0.1 and 0.2% PC. The results showed that the addition of PC had no significant effect (P > 0.05) on growth performance, and carcass traits of AA+ broilers during the experimental period (1-42 days of age). Dietary addition of PC significantly increased the thymus index of AA+ broilers (P < 0.05), reduced the number of E. coli and Salmonella in feces (P < 0.01) and reduced the concentrations of fecal NH3 and H2S emissions (P < 0.01). Furthermore, birds fed 0.2% PC diet had the highest number of fecal Lactobacillus counts. Results indicate that probiotic complex consisting of Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis enhances immune organ development, reduces the number of E. coli and Salmonella in feces, increases the number of Lactobacillus and reduces NH3 and H2S emissions in feces. This trial provides a theoretical basis for the use of probiotic complexes in broiler production.

4.
Nanomaterials (Basel) ; 9(10)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627426

RESUMO

Interface interactions play a crucial role in determining the thermomechanical properties of carbon nanotubes (CNTs)/polymer nanocomposites. They are, however, poorly treated in the current multi-scale coarse-grained (CG) models. To develop suitable CG models of CNTs/polymer nanocomposites, we demonstrate the importance of two aspects for the first time, that is, preserving the interfacial cohesive energy and reproducing the interface load transfer behavior of all-atomistic (AA) systems. Our simulation results indicate that, for CNTs/polymer nanocomposites, the interface cohesive energy and the interface load transfer of CG models are generally inconsistent with their AA counterparts, revealing significant deviations in their predicted mechanical properties. Fortunately, such inconsistency can be "corrected" by phenomenologically adjusting the cohesive interaction strength parameter of the interface LJ potentials in conjunction with choosing a reasonable degree of coarse-graining of incorporated CNTs. We believe that the problem studied here is general for the development of the CG models of nanocomposites, and the proposed strategy used in present work may be applied to polymer nanocomposites reinforced by other nanofillers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...